Land-cover / Land-use Change and Carbon Fluxes in Central and Eastern Europe

Mutlu Ozdogan University of Wisconsin

Pontus Olofsson Boston University

October 17, 2014

Goals

- Land-use/land-cover change and the carbon cycle
- Land-cover change includes forest loss, forest gain, agricultural abandonment, and agricultural intensification
- Historical land use change
- The satellite era
- Carbon bookkeeping model

Physiographic Setting

- Rich in physiographic provinces
 - Topography partially determines land-cover and use
- Mountains
 - Caucasus, Carpathian
 - Dominated by forests
- Low relief plains
 - Dominated by agricultural lands and grasslands
- Large water bodies
- Major rivers

Historical Setting

- Over 3000 years of settled history
- Agriculture plays a dominant role
- Region of "conquests"
- Major migration routes
- Raw materials for wars (wood) and
- later industrial development
- Industrialization
- Soviet revolution
- Independence

Current Trends

- Demographic
 - Slow growth
 - Urbanization
 - Migration
- Economic and Industrial
 - European integration
 - Manufacturing hub and construction industry
 - Agricultural activities
- Natural
 - Forest harvest/re-growth
 - Mixed climate change signal

Research Questions

- How do recent drastic socioeconomic changes affect forest cover?
 - Forest loss / forest gain
- What are the best methods for monitoring these changes remotely?
 - Remote sensing, historical perspective
- What are the impacts of these changes on the regional terrestrial carbon budgets?
 - Carbon release; carbon uptake

Forests of the region

- Forests dominate high elevation areas
 - Large forest area compared to central and western Europe
- Changes are location specific:
 - Hungary privatization/renewable energy
 - Romania privatization
 - Georgia fuel wood
 - Ukraine commercial extraction

Forest change (Romania)

Carbon budgets associated with land change

Carbon book-keeping model

- Originally developed by Richard Houghton et al. (1983)
- Calculates the carbon emissions and uptake over time associated with land change events
- Events may include i) forest harvest, ii) conversion to cropland, iii) abandonment of farmland, etc.
- Makes use of forest inventory data for growth rates, age distributions and average biomass
- Includes the effects of decomposition of forest products

Carbon book-keeping model

Sources: Center for climatic research, institute for environmental studies, university of Wisconsin at Madison; Okanagan university college in Cenada, Department of geography, Wold Watch, November-December 1966; Climate change 1965; The science of climate change, outching university, 1996. In the second assessment report of the intergovernmental pand on climate change, UNEP and WMO, Cambridge press university, 1996.

Harvest event

Animation 1: Event/disturbance

Afforestation or forest regrowth on abandoned farmland. 50 km2 of forest planted every year between 2001 and 2010.

Animation 2: Event/disturbance

Clearing of forest, no forest regrowth. 50 km2 cleared every year between 2001 and 2010.

Animation 3: Event/disturbance

Harvest. Forest replanted after harvest. 50 km2 harvested annually 2001-2010.

Romania

Historical and Current Land Use

- Historical rates from records of forestry statistics
- Areas of stable and changing forest 1990-2000, and 2005-2010 mapped using Landsat data
- Vast areas of forest converted to farmlands historically
- Harvest rate dropped dramatically after collapse of Soviet Union
- But 60% harvest increase from 1990-2000 to 2005-2010

Carbon Fluxes

- Carbon book-keeping model run using historical and current rates of forest loss, gain and harvest
- Carbon implications of restitution small compared to terrestrial emissions from logging during 60s and 70s

Future Carbon Fluxes

 Model run for future scenarios based on current logging rate and regrowth of forest on current abandoned or fallow farmland (2.9 million ha)

Ukraine

Kuemmerle, T., Olofsson, P et al. (2011) Global Change Biology, 17: 1335–1349

Changes in forest cover were mapped in a previous study (Kuemmerle, T., et al., Forest cover change..., *Remote Sensing of Environment* (2009), doi:10.1016/j.rse.2009.02.006)

Estimated land use change rates from 1900

Carbon fluxes modeled using observed rates of land use change

Net flux under different scenarios

Conclusions: Ukraine

- Widespread change in forest cover 1988-2007
- Unsustainable logging (but probably no deforestation)
- Natural reforestation on abandoned farmland
- Slight net increase in forest cover 1988-2007
- Carbon sink now and in the future

Future

- Include large area agricultural land abandonment rates into this analysis
- Carpathian Basin 200-year change maps can we move to spatial version of carbon accounting?
- Will the abandoned lands continue to be left out of production?
- Past is important but the future is important too:
 i.e. EU policies and implications for carbon?

Forests - 1860 to 2005

1860

1930

1960

2005

Forest transition in the 1930s

- · Habsburg management and War, agricultural expansion
- Abandonment of marginal areas, reforestation plans

Thank you ozdogan@wisc.edu